
Preparing WL-LSMS for First Principles
Thermodynamics Calculations on Accelerator and

Multicore Architectures

Markus Eisenbach

Oak Ridge National Laboratory

Motivation
• Density Functional Calculations have proven to be a useful tool to study the
ground state of many materials.

• For finite temperatures the situation is less ideal an one is often forced to rely
on model calculation with parameters either fitted to first principles calculations or
experimental results.

• Fitting to models is especially unsatisfactory in inhomogeneous systems,
nanoparticles or other systems where the model parameters could vary
significantly from one site to another.

Solution:
Combine First Principles calculations with statistical mechanics methods

Thermodynamic Observables

Z(β) =
�

{ξi}

e−βH({ξi})

F (T) = −kBT lnZ(1/kBT)

• Thermodynamic observables are related to the
partition function Z and free energy F

• If we can calculate Z(β) thermodynamic
observables can be calculated as logarithmic
derivatives.

Wang-Landau Method

• Conventional Monte Carlo methods calculate
expectation values by sampling with a weight given by
the Bolzmann distribution

• In the Wang-Landau Method we rewrite the partition
function in terms of the density of states which is
calculated by this algorithm

• To derive an algorithm to estimate g(E) we note that
states are randomly generated with a probability
proportional to 1/g(E) each energy interval is visited with
the same frequency (flat histogram)

Z(β) =
�

{ξi}

e−βH({ξi}) = g0

�
g(E)e−βEdE

Metropolis Method Wand-Landau Method

Compute partition function and
other averages with
configurations that are weighted
with a Boltzmann factor

Sample configuration where Boltz-
mann factor is large.

If configurations are accepted with
probability 1/W all energies are visited
equally (flat histogram)

4. Iterate 2 & 3 until histogram is flat

1. Select configuration

2. Modify configuration (move)

3. Accept move with probability

2. Propose move, accepted with probability

1. Begin with prior estimate, eg

3. If move accepted increase DOS

5. Reduce and go back to 1

Metropolis et al, JCP 21, 1087 (1953) Wang and Landau, PRL 86, 2050 (2001)

Z =

∫
e
−E[x]/kBT

dx Z =

∫
W (E)e−E/kBT

dE

W
′(E) = 1

Ei = E[xi]

Ef = E[xf]

Ai→f = min{1, eβ(Ei−Ef)}

Ai→f = min{1, W ′(Ei)/W ′(Ef)}

W ′(Ef) → W ′(Ef) × f f > 1

f → f =

√

f

Not quite embarrassingly parallel

Metropolis MC acceptance:

random walker 1

random walker 2

Ai→f = min{1, eβ(Ei−Ef)}

global update of joint DOS at every MC step...

Wang-Landau acceptance:

Ai→f = min{1, eα(wα(xf)−wα(xi)}

Not quite embarrassingly parallel

Metropolis MC acceptance:

random walker 1

random walker 2

Ai→f = min{1, eβ(Ei−Ef)}

global update of joint DOS at every MC step...

Wang-Landau acceptance:

Ai→f = min{1, eα(wα(xf)−wα(xi)}

Not quite embarrassingly parallel

Metropolis MC acceptance:

random walker 1

random walker 2

Ai→f = min{1, eβ(Ei−Ef)}

local calculation of energy and observable ~ millisecond to minutes

limited by latency ~ microseconds

Organization of the WL-LSMS code using a
master-slave approach

Master/driver node controlling WL
acceptance, DOS, and histogramCommunicate moment

directions and energy

LSMS running
on N
processors to
compute
energy of
particular
spin-
configurations

Nearsightedness and the locally self-consistent
multiple scattering (LSMS) method

•Nearsightedness of electronic
matter - Prodan & Kohn,
PNAS 102, 11635 (2005)

- Local electronic properties such
as density depend on effective
potential only at nearby points.

• Locally self-consistent multiple
scattering method - Wang et
al., PRL 75, 2867 (1995)

- Solve Kohn-Sham equation on a
cluster of a few atomic shells
around atom for which density is
computed

- Solve Poisson equation for
entire system - long range of
bare coulomb interaction

A parallel implementation and scaling of the LSMS method:
perfectly scalable at high performance

N-2

j

l

m i k

1 2 3

NN-1

j

l

m k•Need only block i of

•

•Calculation dominated
 by ZGEMM

•Sustained performance
 similar to Linpack

�
A B
C D

�−1

=
�

(A−BD−1C)−1 ∗
∗ ∗

�

Refactoring LSMS_1 to LSMS_3

• LSMS_1 assumes one atom / MPI rank
• But: This might not be ideal with current and future
multicore CPU
• Highly impractical for accelerators (CPUs)

• Increase flexibility of the code to adapt to new architectures
and new physics

• Reduce the amount of code that needs to be rewritten
• (This is essentially a one person effort)

• LSMS_1:
Fortran (mainly 77) for LSMS
C++ for Wang-Landau

LSMS_3

• Multiple atoms / MPI rank
• possibility for multithreading (OpenMP) in LSMS
• enable efficient use of accelerators

• New (less rigid) input file format

• Retain Wang-Landau part form LSMS_1

• LSMS_3:
Top level routines and data structures: C++
New communication routines: C++
Many compute routines from LSMS_1: Fortran

 LSMSSystemParameters lsms;
 LSMSCommunication comm;
 CrystalParameters crystal;
 LocalTypeInfo local;

// Initialize communication and accelerator

// Read the input file

 communicateParameters(comm,lsms,crystal);

 local.setNumLocal(distributeTypes(crystal,comm));
 local.setGlobalId(comm.rank,crystal);

 buildLIZandCommLists(comm,lsms,crystal,local);

 loadPotentials(comm,lsms,crystal,local);

 setupVorpol(lsms,crystal,local,sphericalHarmonicsCoeficients);

 calculateCoreStates(comm,lsms,local);

 energyContourIntegration(comm,lsms,local);
 calculateChemPot(comm,lsms,local,eband);

12

Multiple Atoms / MPI rank

An important step to enable efficient use of multicore and accelerator architectures: Allow
for more work / MPI rank!

In LSMS: multiple atoms / MPI rank
necessitates new communication pattern

N-2

j

l

m i k

1 2 3

NN-1

5.42 and can then reused to specify the lattice struc-

ture in terms of this parameter, which improves both

the readability of the input file and allows for easy

change of this parameter. Finally the example shows

the power of the scripting language approach for fill-

ing in default parameters without the need to provide

complicated mechanism inside the scientific code it-

self that would have to account for multiple usage

scenarios.

Listing 3: Input file for 1024 atom iron calculation

systemid="Fe1024"
system_title = "Iron�test�for�LSMS�3"
pot_in_type =1
num_atoms =2
nspin=3

xRepeat =8
yRepeat =8
zRepeat =8
makeTypesUnique =1

energyContour = {npts=31,grid=2,ebot=-0.3,
etop =0.0, eitop =0.825 , eibot =0.025}

a = 5.42

bravais = {}
bravais [1]={a,0,0}
bravais [2]={0 ,a,0}
bravais [3]={0 ,0 ,a}

site_default ={lmax=3,rLIZ =12.5 , rsteps
={89.5 ,91.5 ,93.2 ,99.9} , atom="Fe",Z=26,Zc
=10,Zs=8,Zv=8,rad =2}

site = {}
for i =1, num_atoms do site[i]={} end

site [1]. pos={0,0,0}
site [1]. evec ={0,0,1}
site [2]. pos ={0.5*a ,0.5*a ,0.5*a}
site [2]. evec ={0,0,1}

-- set site defaults
for i =1, num_atoms do

for k,v in pairs(site_default) do
if(site[i][k]== nil) then site[i][k]=v

end
end

end

4.4 Communication

A major change in the code structure in moving from

LSMS-1 to LSMS-3 involved the distribution of work

across MPI ranks. LSMS-1 assumes a on-to-one map-

ping between atoms and MPI ranks and does not

allow for further parallelism beyond the atom level.

(The additional Wang-Landau parallelism that sits

on top of the LSMS part is not effected by this.) Con-

sequently the main driving force for the refactoring

of LSMS-3 was the desire to allow greater flexibility

in the distribution of work and allow in addition to

the original scheme the possibility to assigne multiple

atoms to a MPI rank and use OpenMP on a multi-

core node to further distribute the work or to utilize

accelerators such as GPUs that are usually have a

different number available then the number of cores

(eg. a node with twelve CPU cores and one GPU).

This change significantly complicates the commu-

nication pattern to distribute the t matrices inside

the LIZ as shown in figure 2. The original path taken

in LSMS-2, an ongoing Fortran 90 rewrite of LSMS

to implement new scientific capabilities such as full

potential and k space calculations, was to use a GET

based on-sided communication scheme, since the sites

from which t matrices are required can be easily cal-

culates whereas the sites that require a given atom’s

t matrix are harder to calculate. Unfortunately on

many distributed memory architectures this commu-

nication scheme incurs a unacceptably large perfor-

mance penalty.

Algorithm 2 The construction of the LIZ commu-

nication lists

for all atoms i in the crystal do
build the local interaction zone LIZi =

{j|dist(xi,xj) < rLIZ} of atom i
for all atoms j in LIZi do
add atom j to the list Ri of data to receive for

atom i (tmatFrom)
add atom i to the list Sj of data to send from

atom j (tmatTo)
end for

end for
remove duplicate entries from Sj and Ri

513

Multiple Atoms / MPI rank

Matrix<Complex> tmatStore;
local remote t matrices needed for building the

local tau matrices

Building the tau matrices:

(1) Prepost receives for remote t matrices
(2) Loop over all local atom (OpenMP)

calculate local t matrices
(3) Send local t matrices
(4) wait for completion of communication

 expectTmatCommunication(comm,local);

 for(int i=0; i<local.atom.size(); i++)
 calculateSingleScattererSolution(lsms,local.atom[i],vr[i],energy,prel,pnrel, solution[i]);

 sendTmats(comm,local);
 finalizeTmatCommunication(comm);

14

Calculating the tau matrix

for(int i=0; i<local.num_local; i++)
 calculateTauMatrix(lsms,local,local.atom[i],

 energy,prel,&tau00_l(0,i));

OAK RIDGE NATIONAL LABORATORY

U. S. DEPARTMENT OF ENERGY

Structure of Wang-Landau-LSMS

33

Wang-Landau Driver (1 process)!

g(E); {�mi}M

LSMS!

Instance 1!

(N procs)!

LSMS!

Instance 1!

(N procs)!

LSMS!

Instance M!

(N procs)!

Figure 1: Parallelization strategy of the combined
Wang-Landau/LSMS algorithm. The Wang-Landau
process (Alg. 1) generates random spin configurations
for M walkers and updates a single density of states
g(E). The energies for these N atom systems are
calculated by independent LSMS processes (Fig. 2).
This results in two levels of communication, between
the Wang-Landau driver and the LSMS instances,
and the internal communication inside the individual
LSMS instances spanning N processes each.

millions of processing cores. The schematics of the
parallelization structure are shown in fig. 1.

The Wang-Landau portion of the code uses the al-
gorithm 1 to calculate the thermodynamic density
of states necessary to investigate material behavior
at finite temperature. Since this part already had
been written with an interface in mind that allows
the easy exchange of the energy calculation (the com-
putationally intensive part performed by LSMS) no
modifications were necessary in moving from LSMS-1
to LSMS-3 and the only part that is of concern for
this study is the LSMS section of the code.

3 The LSMS Algorithm

For the energy evaluation, we employ the first prin-
ciples framework of density functional theory (DFT)
in in the local spin density approximation (LSDA).
To solve the Kohn-Sham equations arising in this
context, we use a real space implementation of the
multiple scattering formalism. The Locally Self-

Algorithm 1 Wang-Landau/LSMS algorithm

1: initialize logarithmic density of states ln g(E) ←
0, histogram h(E) ← 0, modification factor γ ←
1, and the set of magnetic moment directions for
the M walkers {ê}1...M

2: repeat
3: submit new random moment directions {ênew}

to idle LSMS instances
4: receive new energy Enew

n from walker n
5: accept new set of directions {ênew}n with prob-

ability min[1, g(Eold
n)/g(Enew

n)]
6: if Move accepted then
7: {êold}n ← {ênew}n
8: end if
9: update density of states ln g(En) ← ln g(En)+

γ and histogram h(En) ← h(En) + 1
10: if h(E) flat then
11: γ ← γ/2, h(E) ← 0
12: end if
13: until g(E) converged, i.e. γ ≈ 0

consistent Multiple Scattering (LSMS) method cal-
culates the electronic properties from first principles
in reals space, but introduces some approximations
that make the treatment of infinite systems possible.
Furthermore this method results in a code that scales
linearly with the size of the system.

The LSMS method is based on the observation
that good convergence can be obtained by solving the
Kohn-Sham equation of density functional theory at
a given atomic site by considering not the whole sys-
tem, but only a sufficiently large neighborhood, the
local interaction zone (LIZ), of each site. The details
of this method for calculating the Green function and
the total ground state energy E[n(�r), �m(�r)] are de-
scribed elsewhere [3, 4]. For the present discussion it
is important to note that the computationally most
intensive part is the calculation of the scattering path
matrix τ for each atom in the system by inverting the
multiple scattering matrix.

τ = [I − tG0]
−1 t (1)

The only part of τ that will be required in the sub-
sequent calculation of site diagonal observables (i.e.

2
(1) For all local atoms (possibility for multithreading)

(a) build m matrix (m=I-tG) (multithreading or accelerator)
(b) invert m matrix (multithreading or accelerator)
(c)

OAK RIDGE NATIONAL LABORATORY

U. S. DEPARTMENT OF ENERGY

Structure of Wang-Landau-LSMS

33

Wang-Landau Driver (1 process)!

g(E); {�mi}M

LSMS!

Instance 1!

(N procs)!

LSMS!

Instance 1!

(N procs)!

LSMS!

Instance M!

(N procs)!

Figure 1: Parallelization strategy of the combined
Wang-Landau/LSMS algorithm. The Wang-Landau
process (Alg. 1) generates random spin configurations
for M walkers and updates a single density of states
g(E). The energies for these N atom systems are
calculated by independent LSMS processes (Fig. 2).
This results in two levels of communication, between
the Wang-Landau driver and the LSMS instances,
and the internal communication inside the individual
LSMS instances spanning N processes each.

millions of processing cores. The schematics of the
parallelization structure are shown in fig. 1.

The Wang-Landau portion of the code uses the al-
gorithm 1 to calculate the thermodynamic density
of states necessary to investigate material behavior
at finite temperature. Since this part already had
been written with an interface in mind that allows
the easy exchange of the energy calculation (the com-
putationally intensive part performed by LSMS) no
modifications were necessary in moving from LSMS-1
to LSMS-3 and the only part that is of concern for
this study is the LSMS section of the code.

3 The LSMS Algorithm

For the energy evaluation, we employ the first prin-
ciples framework of density functional theory (DFT)
in in the local spin density approximation (LSDA).
To solve the Kohn-Sham equations arising in this
context, we use a real space implementation of the
multiple scattering formalism. The Locally Self-

Algorithm 1 Wang-Landau/LSMS algorithm

1: initialize logarithmic density of states ln g(E) ←
0, histogram h(E) ← 0, modification factor γ ←
1, and the set of magnetic moment directions for
the M walkers {ê}1...M

2: repeat
3: submit new random moment directions {ênew}

to idle LSMS instances
4: receive new energy Enew

n from walker n
5: accept new set of directions {ênew}n with prob-

ability min[1, g(Eold
n)/g(Enew

n)]
6: if Move accepted then
7: {êold}n ← {ênew}n
8: end if
9: update density of states ln g(En) ← ln g(En)+

γ and histogram h(En) ← h(En) + 1
10: if h(E) flat then
11: γ ← γ/2, h(E) ← 0
12: end if
13: until g(E) converged, i.e. γ ≈ 0

consistent Multiple Scattering (LSMS) method cal-
culates the electronic properties from first principles
in reals space, but introduces some approximations
that make the treatment of infinite systems possible.
Furthermore this method results in a code that scales
linearly with the size of the system.

The LSMS method is based on the observation
that good convergence can be obtained by solving the
Kohn-Sham equation of density functional theory at
a given atomic site by considering not the whole sys-
tem, but only a sufficiently large neighborhood, the
local interaction zone (LIZ), of each site. The details
of this method for calculating the Green function and
the total ground state energy E[n(�r), �m(�r)] are de-
scribed elsewhere [3, 4]. For the present discussion it
is important to note that the computationally most
intensive part is the calculation of the scattering path
matrix τ for each atom in the system by inverting the
multiple scattering matrix.

τ = [I − tG0]
−1 t (1)

The only part of τ that will be required in the sub-
sequent calculation of site diagonal observables (i.e.

2

m has rank k * #LIZ and can be broken in k * k blocks mij

mij = Iδij − tiG
ij
0

in most cases only the diagonal block for the local site is needed

τ00 = (m−1)00t0

15

Block Inverse

The LSMS method requires only the first diagonal block of the inverse matrix

Recursively apply

�
A B
C D

�−1

=
�

(A−BD−1C)−1 ∗
∗ ∗

�

The block size is a performance tuning parameter:

• Smaller block size: less work
• Larger block size: higher performance of matrix-matrix multiply

Performance of LSMS dominated by double complex matrix matrix multiplication

ZGEMM

16

17

Main zblock_lu loop
BLAS: CPU, LAPACK: CPU
 n=blk_sz(nblk)
 joff=na-n
 do iblk=nblk,2,-1
 m=n
 ioff=joff
 n=blk_sz(iblk-1)
 joff=joff-n
c invert the diagonal blk_sz(iblk) x blk_sz(iblk) block
 call zgetrf(m,m,a(ioff+1,ioff+1),lda,ipvt,info)
c calculate the inverse of above multiplying the row block
c blk_sz(iblk) x ioff
 call zgetrs('n',m,ioff,a(ioff+1,ioff+1),lda,ipvt,
 & a(ioff+1,1),lda,info)
 if(iblk.gt.2) then
 call zgemm('n','n',n,ioff-k+1,na-ioff,cmone,a(joff+1,ioff+1),lda,
 & a(ioff+1,k),lda,cone,a(joff+1,k),lda)
 call zgemm('n','n',joff,n,na-ioff,cmone,a(1,ioff+1),lda,
 & a(ioff+1,joff+1),lda,cone,a(1,joff+1),lda)
 endif
 enddo
 call zgemm('n','n',blk_sz(1),blk_sz(1)-k+1,na-blk_sz(1),cmone,
 & a(1,blk_sz(1)+1),lda,a(blk_sz(1)+1,k),lda,cone,a,lda)

18

Main zblock_lu loop
BLAS: CPU
LAPACK: CPU

 do iblk=nblk,2,-1
 ...

 call zgetrf(…)
 call zgetrs(…)

 call zgemm(…)
 call zgemm(…)

 enddo

 call zgemm(…)

19

Main zblock_lu loop – GGD
BLAS: GPU (CUDA)
LAPACK: GPU (CULA device API)

 call cublas_set_matrix(…)

 do iblk=nblk,2,-1
 ...

 call cula_device_zgetrf(…)
 call cula_device_zgetrs(…)

 call cublas_zgemm(…)
 call cublas_zgemm(…)

 enddo

 call cublas_zgemm(…)

 call cublas_get_matrix(…)

20

WL-LSMS3
• First Principles Statistical Mechanics of Magnetic Materials

• identified kernel for initial GPU work
– zblock_lu (95% of wall time on CPU)
– kernel performance: determined by BLAS and LAPACK: ZGEMM,

ZGETRS, ZGETRF

• preliminary performance of zblock_lu for 12 atoms/node of Jaguarpf
or 12 atoms/GPU
– For Fermi C2050, times include host-GPU PCIe transfers
– Currently GPU node does not utilize AMD Magny Cours host for

compute

Jaguarpf node
(12 cores AMD
Istanbul)

Fermi C2050
using CUBLAS

Fermi C2050
using Cray
Libsci

Time (sec) 13.5 11.6 6.4

Slide provided by Cray

